The head contractorand the crane sub-contractor agree that if the crane sub-contractors workers need first aid while on-site they will use the construction sites first aid facilities. "Architectural masonry is the evolvement of standard concrete masonry blocks into aesthetically pleasing concrete masonry units (CMUs)". The provision of fire safety in each risk-based category should be justified on the account of classified risk, and special emphasis should be given to the use of cost-effective alternate strategies to attain desired level of fire performance. It is important that revision numbers used in the file names of the revised sheets saved to the appropriate contract plans folder in ProjectWise correspond to the number of the contract addendum in coordination with Central Office Design Division Bidding and Contract Services. This is particularly important when sling angles cause compression in the element and when long thin elements have the potential to rotate. In case it is not possible to change building architecture, additional exit paths should be strategically located in building to improve egress timing, and thus, improve life safety. The following chart shows the suggested minimum weld sizes. Culverts located underneath heavily travelled roadways or sagging vertical curves are good candidates for use of epoxy. Pavement and permanent barriers of existing, new and future roadways shall be shown at their proper location using the appropriate CAD levels. As the loads can differ during various stages, the structural designer should consider whether precast concrete elements could buckle or become unstable. Expansion anchors are more prone to installation errors than cast-in fixings. Are service mark-outs shown in plans or other information, for example, showing the location of overhead and underground services? 3 unit(s) The values for Grade 40 bars are 40/60 of the values in the table (not less than 8db, 6 in. The PCBU should investigate incidents and near misses to identify their causes and what needs to change to prevent them from happening again. The structural designer will provide the concrete strength required for a precast concrete element to meet the requirements of the final structure, based on strength or durability requirements. See Appendix K of these guidelines for an example. Handling, transporting and erecting precast concrete elements are high-risk activities that have resulted in deaths and serious injuries to New Zealand workers. For this situation, no parts of the bridge are to be curved. requirements for additional reinforcement? sharing information about health and safety matters so that workers arewell-informed, know what is going on and can contribute to decision-making, giving workers reasonable opportunities to have a say about health and safety matters, listening to and considering what workers have to say, giving workers opportunities to contribute to the decision-making process relating to a health and safety matter, considering workers views when decisions are being made. A PCBU who designs plant, substances or structures has additional health and safety duties under HSWA. All welds to FCMs shall be considered fracture critical and shall conform to the requirements of FCP. See the examples below. >> endobj 582 0 obj << /D [ 0 /FitH 753 ] /F 583 0 R /S /GoToR >> endobj 583 0 obj << /F (ASCE003c07_p81-94.pdf) /Type /FileSpec >> endobj 584 0 obj << /F (ASCE003c07_p81-94.pdf) /Type /FileSpec >> endobj 585 0 obj << /F (ASCE003c07_p81-94.pdf) /Type /FileSpec >> endobj 586 0 obj << /F (ASCE003c07_p81-94.pdf) /Type /FileSpec >> endobj 587 0 obj << /D [ 0 /FitH 753 ] /F 588 0 R /S /GoToR >> endobj 588 0 obj << /F (ASCE003c07_p81-94.pdf) /Type /FileSpec >> endobj 589 0 obj << /D [ 1 /FitH 716 ] /F 599 0 R /S /GoToR >> endobj 590 0 obj << /Parent 567 0 R /A 591 0 R /Next 570 0 R /Prev 592 0 R /Title (7.4.4 Roof Slope Factor for Multiple Folded Plate, Sawtooth, and Barrel \ Vault Roofs) >> endobj 591 0 obj << /D [ 1 /FitH 767 ] /F 598 0 R /S /GoToR >> endobj 592 0 obj << /Parent 567 0 R /A 593 0 R /Next 590 0 R /Prev 594 0 R /Title (7.4.3 Roof Slope Factor for Curved Roofs) >> endobj 593 0 obj << /D [ 1 /FitH 828 ] /F 597 0 R /S /GoToR >> endobj 594 0 obj << /Parent 567 0 R /A 595 0 R /Next 592 0 R /Prev 568 0 R /Title (7.4.2 Cold Roof Slope Factor, Cs) >> endobj 595 0 obj << /D [ 1 /FitH 960 ] /F 596 0 R /S /GoToR >> endobj 596 0 obj << /F (ASCE003c07_p81-94.pdf) /Type /FileSpec >> endobj 597 0 obj << /F (ASCE003c07_p81-94.pdf) /Type /FileSpec >> endobj 598 0 obj << /F (ASCE003c07_p81-94.pdf) /Type /FileSpec >> endobj 599 0 obj << /F (ASCE003c07_p81-94.pdf) /Type /FileSpec >> endobj 600 0 obj << /F (ASCE003c07_p81-94.pdf) /Type /FileSpec >> endobj 601 0 obj << /D [ 0 /FitH 630 ] /F 602 0 R /S /GoToR >> endobj 602 0 obj << /F (ASCE003c07_p81-94.pdf) /Type /FileSpec >> endobj 603 0 obj << /D [ 1 /FitH 630 ] /F 604 0 R /S /GoToR >> endobj 604 0 obj << /F (ASCE003c07_p81-94.pdf) /Type /FileSpec >> endobj 605 0 obj << /F (ASCE003c07_p81-94.pdf) /Type /FileSpec >> endobj 606 0 obj << /D [ 1 /FitH 630 ] /F 607 0 R /S /GoToR >> endobj 607 0 obj << /F (ASCE003c07_p81-94.pdf) /Type /FileSpec >> endobj 608 0 obj << /D [ 1 /FitH 630 ] /F 615 0 R /S /GoToR >> endobj 609 0 obj << /Parent 559 0 R /A 610 0 R /Next 562 0 R /Prev 611 0 R /Title (7.6.3 Unbalanced Snow Loads for Multiple Folded Plate, Sawtooth, and Bar\ rel Vault Roofs.) Make sure all control measures for safe handling, storing and transportation are in place. The correct lifting equipment should be on-site to unload precast concrete elements. See WorkSafes Emergency Management Flipchart on the Hazardous Substances Toolbox website. The competent person should check structural integrity,braces and connections, and fixing points. Part 3 of HSWA covers worker engagement, participation, and representation. High Initial Investment: For installing a precast concrete plant, heavy and sophisticated machines are necessary which requires a high initial investment.A large scale of precast construction projects must be available to ensure sufficient profit. 24287, Email:Undergraduate:cr_ugciv@mcmaster.caGraduate:civil@mcmaster.ca, Office closed daily from 12:00pm to 1:00pm. Repetitive lifting (of elements that will be lifted multiple times during their service life), Lift and place loads using a tower crane, mobile crane, overhead crane running on rails, portal crane or excavator, Lift, travel and place thin-walled civil products under the conditions listed below, Lift, travel and place loads using tracked or rubber tyre equipment over prepared even surfaces (including asphalt or concrete), Lift, travel and place loads over rough terrain, such as unprepared natural ground, Precast concrete elements breaking during manufacture, Workers suffering musculoskeletal injuries (eg sprains and strains, back injuries, abdominal hernias) when handling precast concrete elements, Workers being exposed to substances harmful to health at unsafe levels, Workers suffering musculoskeletal injuries (eg sprains and strains, back injuries, abdominal hernias) when handling precast concrete elements (eg when lifting, lowering, pushing, pulling, carrying, throwing, moving, restraining, or holding elements), Workers falling from height (eg from A-frames) when handling precast concrete elements, Precast concrete elements falling or collapsing and causing severe crush injuries (eg the uncontrolled collapse of elements, or a person being caught between an element and another object), The rigging fails resulting in the panel falling, Underground and overhead services and structures (eg underground cables, water, gas or sewage pipes, overhead power lines) are contacted or damaged during erection resulting in injuries, electric shock, or death, Workers falling from height when erecting precast concrete panels, During the lift the boom of the crane hits people, structures or other plant in its path, The dogman/rigger, ground workers and/or crane operator are electrocuted, Objects fall off the load being lifted and hit people, structures or other plant, outline the risks associated with handling, transporting, and erecting precast concrete elements, describe good practices for managing those risks. It should not be the first or only control measure considered. There should be a legal provision of severe fines/penalties which can be implemented using an appropriate mechanism. This can be achieved by using fire compartmentation which contains the fire to a local area only and does not allow further movement of fire inside the building. A masonry veneer wall consists of masonry units, usually clay-based bricks, installed on one or both sides of a structurally independent wall usually constructed of wood or masonry. Similar studies should be pursued by developed countries to further enhance the field of fire safety. Because of limited space on a plan sheet and scalability conflicts, for example in the case of a bridge where a bridge is much longer than tall, controlling the amount of distortion becomes critical. Epoxy coated reinforcement shall also be considered (regardless of location) where panels will be continuously wetted (around sources of water) and for structurally critical applications, such as containing necessary fill around structures. They may have inserts cast in to suit a particular rigging arrangement, or they may be intended to be lifted by slings or other means without using cast-in inserts. 1724E-214. For example by: WorkSafe recommends establishing an exclusion zone in areas where it is not reasonably practicable to prevent an object from falling freely or to use a system to arrest the fall. Walls need only be shown for a short distance past the boundary of the bridge ending with a long break line. The low water elevation shall not be shown or specified if the stream runs dry. Masonry tends to be heavy and must be built upon a strong foundation, such as reinforced concrete, to avoid settling and cracking. EPG 751.5.2.1.3 Information Blocks provides instructions for filling out required information blocks. Also, in developed countries, regulation authorities should benefit from newly developed cognitive infrastructure, where active and passive fire safety measures in building are monitored continuously using automated sensors, to check for fire safety regulation and enforcement automatically (Naser and Kodur, 2018). See Figure 20. Blocks with standard plain bearings are not intended to be rotated under load. The second influencing factor on firefighting is the quality and quantity of available firefighting resources. Report to the nearest foot for minimum tip penetration, pile cleanout penetration, minimum galvanized penetration and estimated maximum scour depth. The Class C roadway fill need not be shown or specified. Yes, please review the "How to Apply" section. Alarie, Y. The best results are achieved when a PCBU and its workers work together to manage risk, improve healthand safety at work, and find solutions. Frames should be secured and designed to withstand any forces applied during loading, transport and unloading. Concrete tables throughout these guidelines. When stages of design are undertaken by individual designers, each designer has responsibility for the stage over which they have control. Whereas, passive fire protection systems (structural and non-structural building components) are designed to ensure structural stability during fire exposure and to contain fire spread. are issued by the client to the head contractor, and by the head contractor to the precast manufacturer, may include specifications and drawings for the precast concrete element, include dimensions, material properties and fixing details. scheduled dates (eg for delivery and erection). Past tense shall also be used with verbs used as adjectives, including words describing the orientation of structures or structural components, e.g. 865-891. The head contractor and the transport operator should together decide the most suitable unloading sequence. A minimum of two restraints should be used on precast concrete elements,unless clearly specified and detailed in the erection design documentation. >> endobj 1897 0 obj << /D [ 1 /FitH 644 ] /F 1931 0 R /S /GoToR >> endobj 1898 0 obj << /Parent 1895 0 R /A 1923 0 R /Prev 1924 0 R /Title (C4.8.5 Limitations on One-Way Slabs) >> endobj 1899 0 obj << /Parent 98 0 R /A 1900 0 R /Next 1895 0 R /Prev 1901 0 R /Title (C4.7 Impact Loads) >> endobj 1900 0 obj << /D [ 1 /FitH 960 ] /F 1922 0 R /S /GoToR >> endobj 1901 0 obj << /Parent 98 0 R /A 1902 0 R /Next 1899 0 R /Prev 1903 0 R /Title (C4.6 Partial Loading) >> endobj 1902 0 obj << /D [ 1 /FitH 960 ] /F 1921 0 R /S /GoToR >> endobj 1903 0 obj << /First 1904 0 R /Parent 98 0 R /A 1905 0 R /Next 1901 0 R /Count -4 /Last 1906 0 R /Prev 1907 0 R /Title (C4.4 Loads on Handrails, Guardrail Systems, Grab Bar Systems, Vehicle Ba\ rrier Systems, and Fixed Ladders) >> endobj 1904 0 obj << /Parent 1903 0 R /A 1919 0 R /Next 1913 0 R /Title (C4.4.1 Loads on Handrails and Guardrail Systems) >> endobj 1905 0 obj << /D [ 1 /FitH 838 ] /F 1918 0 R /S /GoToR >> endobj 1906 0 obj << /Parent 1903 0 R /A 1910 0 R /Prev 1911 0 R /Title (C4.4.4 Loads on Fixed Ladders) >> endobj 1907 0 obj << /Parent 98 0 R /A 1908 0 R /Next 1903 0 R /Prev 99 0 R /Title (C4.3 Concentrated Loads) >> endobj 1908 0 obj << /D [ 1 /FitH 838 ] /F 1909 0 R /S /GoToR >> endobj 1909 0 obj << /F (ASCE003cC04_p269-274.pdf) /Type /FileSpec >> endobj 1910 0 obj << /D [ 1 /FitH 630 ] /F 1917 0 R /S /GoToR >> endobj 1911 0 obj << /Parent 1903 0 R /A 1912 0 R /Next 1906 0 R /Prev 1913 0 R /Title (C4.4.3 Loads on Vehicle Barrier Systems) >> endobj 1912 0 obj << /D [ 1 /FitH 630 ] /F 1916 0 R /S /GoToR >> endobj 1913 0 obj << /Parent 1903 0 R /A 1914 0 R /Next 1911 0 R /Prev 1904 0 R /Title (C4.4.2 Loads on Grab Bar Systems) >> endobj 1914 0 obj << /D [ 1 /FitH 838 ] /F 1915 0 R /S /GoToR >> endobj 1915 0 obj << /F (ASCE003cC04_p269-274.pdf) /Type /FileSpec >> endobj 1916 0 obj << /F (ASCE003cC04_p269-274.pdf) /Type /FileSpec >> endobj 1917 0 obj << /F (ASCE003cC04_p269-274.pdf) /Type /FileSpec >> endobj 1918 0 obj << /F (ASCE003cC04_p269-274.pdf) /Type /FileSpec >> endobj 1919 0 obj << /D [ 1 /FitH 838 ] /F 1920 0 R /S /GoToR >> endobj 1920 0 obj << /F (ASCE003cC04_p269-274.pdf) /Type /FileSpec >> endobj 1921 0 obj << /F (ASCE003cC04_p269-274.pdf) /Type /FileSpec >> endobj 1922 0 obj << /F (ASCE003cC04_p269-274.pdf) /Type /FileSpec >> endobj 1923 0 obj << /D [ 2 /FitH 1011 ] /F 1930 0 R /S /GoToR >> endobj 1924 0 obj << /Parent 1895 0 R /A 1925 0 R /Next 1898 0 R /Prev 1926 0 R /Title (C4.8.3 Parking Garage Loads) >> endobj 1925 0 obj << /D [ 2 /FitH 818 ] /F 1929 0 R /S /GoToR >> endobj 1926 0 obj << /Parent 1895 0 R /A 1927 0 R /Next 1924 0 R /Prev 1896 0 R /Title (C4.8.2 Heavy Live Loads) >> endobj 1927 0 obj << /D [ 2 /FitH 818 ] /F 1928 0 R /S /GoToR >> endobj 1928 0 obj << /F (ASCE003cC04_p269-274.pdf) /Type /FileSpec >> endobj 1929 0 obj << /F (ASCE003cC04_p269-274.pdf) /Type /FileSpec >> endobj 1930 0 obj << /F (ASCE003cC04_p269-274.pdf) /Type /FileSpec >> endobj 1931 0 obj << /F (ASCE003cC04_p269-274.pdf) /Type /FileSpec >> endobj 1932 0 obj << /D [ 1 /FitH 644 ] /F 1933 0 R /S /GoToR >> endobj 1933 0 obj << /F (ASCE003cC04_p269-274.pdf) /Type /FileSpec >> endobj 1934 0 obj << /D [ 2 /FitH 1011 ] /F 1935 0 R /S /GoToR >> endobj 1935 0 obj << /F (ASCE003cC04_p269-274.pdf) /Type /FileSpec >> endobj 1936 0 obj << /F (ASCE003cC04_p269-274.pdf) /Type /FileSpec >> endobj 1937 0 obj << /D [ 2 /FitH 1011 ] /F 1938 0 R /S /GoToR >> endobj 1938 0 obj << /F (ASCE003cC04_p269-274.pdf) /Type /FileSpec >> endobj 1939 0 obj << /F (ASCE003cC04_p269-274.pdf) /Type /FileSpec >> endobj 1940 0 obj << /Type /FileSpec /F (ASCE003cC04_p269-274.pdf) >> endobj 1941 0 obj << /F (ASCE003cC04_p269-274.pdf) /Type /FileSpec >> endobj 1942 0 obj << /Parent 99 0 R /A 1948 0 R /Next 1944 0 R /Title (C4.2.1 Required Live Loads) >> endobj 1943 0 obj << /D [ 0 /FitH 1011 ] /F 1947 0 R /S /GoToR >> endobj 1944 0 obj << /Parent 99 0 R /A 1945 0 R /Prev 1942 0 R /Title (C4.2.2 Provision for Partitions) >> endobj 1945 0 obj << /D [ 0 /FitH 644 ] /F 1946 0 R /S /GoToR >> endobj 1946 0 obj << /F (ASCE003cC04_p269-274.pdf) /Type /FileSpec >> endobj 1947 0 obj << /F (ASCE003cC04_p269-274.pdf) /Type /FileSpec >> endobj 1948 0 obj << /D [ 0 /FitH 1011 ] /F 1949 0 R /S /GoToR >> endobj 1949 0 obj << /F (ASCE003cC04_p269-274.pdf) /Type /FileSpec >> endobj 1950 0 obj << /S /GoToR /F 1981 0 R /D [ 4 /FitH 776 ] >> endobj 1951 0 obj << /Parent 94 0 R /A 1952 0 R /Prev 1953 0 R /Title (C5.4.5 Impact Loads) /Next 97 0 R >> endobj 1952 0 obj << /D [ 2 /FitH 1012 ] /F 1980 0 R /S /GoToR >> endobj 1953 0 obj << /Parent 94 0 R /A 1954 0 R /Next 1951 0 R /Prev 1955 0 R /Title (C5.4.4 Wave Loads) >> endobj 1954 0 obj << /D [ 2 /FitH 1012 ] /F 1979 0 R /S /GoToR >> endobj 1955 0 obj << /Parent 94 0 R /A 1956 0 R /Next 1953 0 R /Prev 1957 0 R /Title (C5.4.3 Hydrodynamic Loads) >> endobj 1956 0 obj << /D [ 1 /FitH 776 ] /F 1978 0 R /S /GoToR >> endobj 1957 0 obj << /Parent 94 0 R /A 1958 0 R /Next 1955 0 R /Prev 1959 0 R /Title (C5.4.2 Hydrostatic Loads) >> endobj 1958 0 obj << /D [ 1 /FitH 977 ] /F 1977 0 R /S /GoToR >> endobj 1959 0 obj << /Parent 94 0 R /A 1960 0 R /Next 1957 0 R /Prev 1961 0 R /Title (C5.4.1 Load Basis) >> endobj 1960 0 obj << /D [ 1 /FitH 977 ] /F 1976 0 R /S /GoToR >> endobj 1961 0 obj << /First 1962 0 R /Parent 94 0 R /A 1963 0 R /Next 1959 0 R /Count -3 /Last 1964 0 R /Prev 1965 0 R /Title (C5.3 Design Requirements) >> endobj 1962 0 obj << /Parent 1961 0 R /A 1974 0 R /Next 1969 0 R /Title (C5.3.1 Design Loads) >> endobj 1963 0 obj << /D [ 1 /FitH 818 ] /F 1973 0 R /S /GoToR >> endobj 1964 0 obj << /Parent 1961 0 R /A 1968 0 R /Prev 1969 0 R /Title (C5.3.3 Loads on Breakaway Walls) >> endobj 1965 0 obj << /Parent 94 0 R /A 1966 0 R /Next 1961 0 R /Prev 95 0 R /Title (C5.2 Definitions) >> endobj 1966 0 obj << /D [ 0 /FitH 654 ] /F 1967 0 R /S /GoToR >> endobj 1967 0 obj << /F (ASCE003cC05_p275-280.pdf) /Type /FileSpec >> endobj 1968 0 obj << /D [ 1 /FitH 635 ] /F 1972 0 R /S /GoToR >> endobj 1969 0 obj << /Parent 1961 0 R /A 1970 0 R /Next 1964 0 R /Prev 1962 0 R /Title (C5.3.2 Erosion and Scour) >> endobj 1970 0 obj << /D [ 1 /FitH 757 ] /F 1971 0 R /S /GoToR >> endobj 1971 0 obj << /F (ASCE003cC05_p275-280.pdf) /Type /FileSpec >> endobj 1972 0 obj << /F (ASCE003cC05_p275-280.pdf) /Type /FileSpec >> endobj 1973 0 obj << /F (ASCE003cC05_p275-280.pdf) /Type /FileSpec >> endobj 1974 0 obj << /D [ 1 /FitH 818 ] /F 1975 0 R /S /GoToR >> endobj 1975 0 obj << /F (ASCE003cC05_p275-280.pdf) /Type /FileSpec >> endobj 1976 0 obj << /F (ASCE003cC05_p275-280.pdf) /Type /FileSpec >> endobj 1977 0 obj << /F (ASCE003cC05_p275-280.pdf) /Type /FileSpec >> endobj 1978 0 obj << /F (ASCE003cC05_p275-280.pdf) /Type /FileSpec >> endobj 1979 0 obj << /F (ASCE003cC05_p275-280.pdf) /Type /FileSpec >> endobj 1980 0 obj << /F (ASCE003cC05_p275-280.pdf) /Type /FileSpec >> endobj 1981 0 obj << /Type /FileSpec /F (ASCE003cC05_p275-280.pdf) >> endobj 1982 0 obj << /F (ASCE003cC05_p275-280.pdf) /Type /FileSpec >> endobj 1983 0 obj << /D [ 0 /FitH 1011 ] /F 1984 0 R /S /GoToR >> endobj 1984 0 obj << /F (ASCE003cC05_p275-280.pdf) /Type /FileSpec >> endobj 1985 0 obj << /D [ 22 /FitH 778 ] /F 2037 0 R /S /GoToR >> endobj 1986 0 obj << /Parent 90 0 R /A 1987 0 R /Next 93 0 R /Prev 1988 0 R /Title (C6.6 Method 3\204Wind-Tunnel Procedure) >> endobj 1987 0 obj << /D [ 21 /FitH 778 ] /F 2036 0 R /S /GoToR >> endobj 1988 0 obj << /First 1989 0 R /Parent 90 0 R /A 1990 0 R /Next 1986 0 R /Count -12 /Last 1991 0 R /Prev 1992 0 R /Title (C6.5 Method 2\204Analytical Procedure) >> endobj 1989 0 obj << /Parent 1988 0 R /A 2034 0 R /Next 2020 0 R /Title (C6.5.1 Scope) >> endobj 1990 0 obj << /D [ 2 /FitH 644 ] /F 2033 0 R /S /GoToR >> endobj 1991 0 obj << /Parent 1988 0 R /A 2001 0 R /Prev 2002 0 R /Title (C6.5.13 Design Wind Loads on Open Buildings with Monoslope, Pitched, or \ Troughed Roofs) >> endobj 1992 0 obj << /Parent 90 0 R /A 1993 0 R /Next 1988 0 R /Prev 1994 0 R /Title (C6.4 Method 1\204Simplified Procedure) >> endobj 1993 0 obj << /D [ 1 /FitH 726 ] /F 2000 0 R /S /GoToR >> endobj 1994 0 obj << /Parent 90 0 R /A 1995 0 R /Next 1992 0 R /Prev 1996 0 R /Title (C6.3 Symbols and Notation) >> endobj 1995 0 obj << /D [ 1 /FitH 1011 ] /F 1999 0 R /S /GoToR >> endobj 1996 0 obj << /Parent 90 0 R /A 1997 0 R /Next 1994 0 R /Prev 91 0 R /Title (C6.2 Definitions) >> endobj 1997 0 obj << /D [ 0 /FitH 644 ] /F 1998 0 R /S /GoToR >> endobj 1998 0 obj << /F (ASCE003cC06_p281-324.pdf) /Type /FileSpec >> endobj 1999 0 obj << /F (ASCE003cC06_p281-324.pdf) /Type /FileSpec >> endobj 2000 0 obj << /F (ASCE003cC06_p281-324.pdf) /Type /FileSpec >> endobj 2001 0 obj << /D [ 21 /FitH 1012 ] /F 2032 0 R /S /GoToR >> endobj 2002 0 obj << /Parent 1988 0 R /A 2003 0 R /Next 1991 0 R /Prev 2004 0 R /Title (C6.5.12 Design Wind Loads on Enclosed and Partially Enclosed Buildings) >> endobj 2003 0 obj << /D [ 20 /FitH 776 ] /F 2031 0 R /S /GoToR >> endobj 2004 0 obj << /Parent 1988 0 R /A 2005 0 R /Next 2002 0 R /Prev 2006 0 R /Title (C6.5.11 Pressure and Force Coefficients) >> endobj 2005 0 obj << /D [ 16 /FitH 776 ] /F 2030 0 R /S /GoToR >> endobj 2006 0 obj << /Parent 1988 0 R /A 2007 0 R /Next 2004 0 R /Prev 2008 0 R /Title (C6.5.10 Velocity Pressure) >> endobj 2007 0 obj << /D [ 16 /FitH 902 ] /F 2029 0 R /S /GoToR >> endobj 2008 0 obj << /Parent 1988 0 R /A 2009 0 R /Next 2006 0 R /Prev 2010 0 R /Title (C6.5.9 Enclosure Classifications) >> endobj 2009 0 obj << /D [ 15 /FitH 916 ] /F 2028 0 R /S /GoToR >> endobj 2010 0 obj << /Parent 1988 0 R /A 2011 0 R /Next 2008 0 R /Prev 2012 0 R /Title (C6.5.8 Gust Effect Factor) >> endobj 2011 0 obj << /D [ 12 /FitH 776 ] /F 2027 0 R /S /GoToR >> endobj 2012 0 obj << /Parent 1988 0 R /A 2013 0 R /Next 2010 0 R /Prev 2014 0 R /Title (C6.5.7 Topographic Effects) >> endobj 2013 0 obj << /D [ 11 /FitH 792 ] /F 2026 0 R /S /GoToR >> endobj 2014 0 obj << /Parent 1988 0 R /A 2015 0 R /Next 2012 0 R /Prev 2016 0 R /Title (C6.5.6 Exposure Categories) >> endobj 2015 0 obj << /D [ 6 /FitH 776 ] /F 2025 0 R /S /GoToR >> endobj 2016 0 obj << /Parent 1988 0 R /A 2017 0 R /Next 2014 0 R /Prev 2018 0 R /Title (C6.5.5 Importance Factor) >> endobj 2017 0 obj << /D [ 5 /FitH 790 ] /F 2024 0 R /S /GoToR >> endobj 2018 0 obj << /Parent 1988 0 R /A 2019 0 R /Next 2016 0 R /Prev 2020 0 R /Title (C6.5.4 Basic Wind Speed) >> endobj 2019 0 obj << /D [ 3 /FitH 1012 ] /F 2023 0 R /S /GoToR >> endobj 2020 0 obj << /Parent 1988 0 R /A 2021 0 R /Next 2018 0 R /Prev 1989 0 R /Title (C6.5.2 Limitations of Analytical Procedure) >> endobj 2021 0 obj << /D [ 3 /FitH 1012 ] /F 2022 0 R /S /GoToR >> endobj 2022 0 obj << /F (ASCE003cC06_p281-324.pdf) /Type /FileSpec >> endobj 2023 0 obj << /F (ASCE003cC06_p281-324.pdf) /Type /FileSpec >> endobj 2024 0 obj << /F (ASCE003cC06_p281-324.pdf) /Type /FileSpec >> endobj 2025 0 obj << /F (ASCE003cC06_p281-324.pdf) /Type /FileSpec >> endobj 2026 0 obj << /F (ASCE003cC06_p281-324.pdf) /Type /FileSpec >> endobj 2027 0 obj << /F (ASCE003cC06_p281-324.pdf) /Type /FileSpec >> endobj 2028 0 obj << /F (ASCE003cC06_p281-324.pdf) /Type /FileSpec >> endobj 2029 0 obj << /F (ASCE003cC06_p281-324.pdf) /Type /FileSpec >> endobj 2030 0 obj << /F (ASCE003cC06_p281-324.pdf) /Type /FileSpec >> endobj 2031 0 obj << /F (ASCE003cC06_p281-324.pdf) /Type /FileSpec >> endobj 2032 0 obj << /F (ASCE003cC06_p281-324.pdf) /Type /FileSpec >> endobj 2033 0 obj << /F (ASCE003cC06_p281-324.pdf) /Type /FileSpec >> endobj 2034 0 obj << /D [ 2 /FitH 776 ] /F 2035 0 R /S /GoToR >> endobj 2035 0 obj << /F (ASCE003cC06_p281-324.pdf) /Type /FileSpec >> endobj 2036 0 obj << /F (ASCE003cC06_p281-324.pdf) /Type /FileSpec >> endobj 2037 0 obj << /F (ASCE003cC06_p281-324.pdf) /Type /FileSpec >> endobj 2038 0 obj << /F (ASCE003cC06_p281-324.pdf) /Type /FileSpec >> endobj 2039 0 obj << /D [ 0 /FitH 1011 ] /F 2040 0 R /S /GoToR >> endobj 2040 0 obj << /F (ASCE003cC06_p281-324.pdf) /Type /FileSpec >> endobj 2041 0 obj << /D [ 8 /FitH 778 ] /F 2111 0 R /S /GoToR >> endobj 2042 0 obj << /Parent 86 0 R /A 2043 0 R /Next 89 0 R /Prev 2044 0 R /Title (C7.13 Other Roofs and Sites) >> endobj 2043 0 obj << /D [ 6 /FitH 790 ] /F 2110 0 R /S /GoToR >> endobj 2044 0 obj << /Parent 86 0 R /A 2045 0 R /Next 2042 0 R /Prev 2046 0 R /Title (C7.12 Existing Roofs) >> endobj 2045 0 obj << /D [ 6 /FitH 790 ] /F 2109 0 R /S /GoToR >> endobj 2046 0 obj << /Parent 86 0 R /A 2047 0 R /Next 2044 0 R /Prev 2048 0 R /Title (C7.11 Ponding Instability) >> endobj 2047 0 obj << /D [ 6 /FitH 776 ] /F 2108 0 R /S /GoToR >> endobj 2048 0 obj << /Parent 86 0 R /A 2049 0 R /Next 2046 0 R /Prev 2050 0 R /Title (C7.10 Rain-on-Snow Surcharge Load) >> endobj 2049 0 obj << /D [ 6 /FitH 776 ] /F 2107 0 R /S /GoToR >> endobj 2050 0 obj << /Parent 86 0 R /A 2051 0 R /Next 2048 0 R /Prev 2052 0 R /Title (C7.9 Sliding Snow) >> endobj 2051 0 obj << /D [ 5 /FitH 792 ] /F 2106 0 R /S /GoToR >> endobj 2052 0 obj << /Parent 86 0 R /A 2053 0 R /Next 2050 0 R /Prev 2054 0 R /Title (C7.8 Roof Projections) >> endobj 2053 0 obj << /D [ 5 /FitH 792 ] /F 2105 0 R /S /GoToR >> endobj 2054 0 obj << /Parent 86 0 R /A 2055 0 R /Next 2052 0 R /Prev 2056 0 R /Title (C7.7 Drifts on Lower Roofs \(Aerodynamic Shade\)) >> endobj 2055 0 obj << /D [ 4 /FitH 778 ] /F 2104 0 R /S /GoToR >> endobj 2056 0 obj << /First 2057 0 R /Parent 86 0 R /A 2058 0 R /Next 2054 0 R /Count -4 /Last 2059 0 R /Prev 2060 0 R /Title (C7.6 Unbalanced Roof Snow Loads) >> endobj 2057 0 obj << /Parent 2056 0 R /A 2102 0 R /Next 2096 0 R /Title (C7.6.1 Unbalanced Snow Loads on Hip and Gable Roofs) >> endobj 2058 0 obj << /D [ 4 /FitH 778 ] /F 2101 0 R /S /GoToR >> endobj 2059 0 obj << /Parent 2056 0 R /A 2093 0 R /Prev 2094 0 R /Title (C7.6.4 Unbalanced Snow Loads for Dome Roofs) >> endobj 2060 0 obj << /Parent 86 0 R /A 2061 0 R /Next 2056 0 R /Prev 2062 0 R /Title (C7.5 Unloaded Portions) >> endobj 2061 0 obj << /D [ 4 /FitH 888 ] /F 2092 0 R /S /GoToR >> endobj 2062 0 obj << /First 2063 0 R /Parent 86 0 R /A 2064 0 R /Next 2060 0 R /Count -3 /Last 2065 0 R /Prev 2066 0 R /Title (C7.4 Sloped-Roof Snow Loads, ps) >> endobj 2063 0 obj << /Parent 2062 0 R /A 2090 0 R /Next 2085 0 R /Title (C7.4.3 Roof Slope Factor for Curved Roofs) >> endobj 2064 0 obj << /D [ 3 /FitH 776 ] /F 2089 0 R /S /GoToR >> endobj 2065 0 obj << /Parent 2062 0 R /A 2084 0 R /Prev 2085 0 R /Title (C7.4.5 Ice Dams and Icicles Along Eaves) >> endobj 2066 0 obj << /First 2067 0 R /Parent 86 0 R /A 2068 0 R /Next 2062 0 R /Count -4 /Last 2069 0 R /Prev 2070 0 R /Title (C7.3 Flat-Roof Snow Loads, p f) >> endobj 2067 0 obj << /Parent 2066 0 R /A 2082 0 R /Next 2076 0 R /Title (C7.3.1 Exposure Factor, Ce) >> endobj 2068 0 obj << /D [ 1 /FitH 776 ] /F 2081 0 R /S /GoToR >> endobj 2069 0 obj << /Parent 2066 0 R /A 2073 0 R /Prev 2074 0 R /Title (C7.3.4 Minimum Values of p f for Low Slope Roofs) >> endobj 2070 0 obj << /Parent 86 0 R /A 2071 0 R /Next 2066 0 R /Prev 87 0 R /Title (C7.2 Ground Snow Loads, p g) >> endobj 2071 0 obj << /D [ 0 /FitH 899 ] /F 2072 0 R /S /GoToR >> endobj 2072 0 obj << /F (ASCE003cC07_p323-336.pdf) /Type /FileSpec >> endobj 2073 0 obj << /D [ 3 /FitH 776 ] /F 2080 0 R /S /GoToR >> endobj 2074 0 obj << /Parent 2066 0 R /A 2075 0 R /Next 2069 0 R /Prev 2076 0 R /Title (C7.3.3 Importance Factor, I) >> endobj 2075 0 obj << /D [ 3 /FitH 776 ] /F 2079 0 R /S /GoToR >> endobj 2076 0 obj << /Parent 2066 0 R /A 2077 0 R /Next 2074 0 R /Prev 2067 0 R /Title (C7.3.2 Thermal Factor, Ct) >> endobj 2077 0 obj << /D [ 2 /FitH 792 ] /F 2078 0 R /S /GoToR >> endobj 2078 0 obj << /F (ASCE003cC07_p323-336.pdf) /Type /FileSpec >> endobj 2079 0 obj << /F (ASCE003cC07_p323-336.pdf) /Type /FileSpec >> endobj 2080 0 obj << /F (ASCE003cC07_p323-336.pdf) /Type /FileSpec >> endobj 2081 0 obj << /F (ASCE003cC07_p323-336.pdf) /Type /FileSpec >> endobj 2082 0 obj << /D [ 2 /FitH 847 ] /F 2083 0 R /S /GoToR >> endobj 2083 0 obj << /F (ASCE003cC07_p323-336.pdf) /Type /FileSpec >> endobj 2084 0 obj << /D [ 4 /FitH 888 ] /F 2088 0 R /S /GoToR >> endobj 2085 0 obj << /Parent 2062 0 R /A 2086 0 R /Next 2065 0 R /Prev 2063 0 R /Title (C7.4.4 Roof Slope Factor for Multiple Folded Plate, Sawtooth, and Barrel\ Vault Roofs) >> endobj 2086 0 obj << /D [ 4 /FitH 888 ] /F 2087 0 R /S /GoToR >> endobj 2087 0 obj << /F (ASCE003cC07_p323-336.pdf) /Type /FileSpec >> endobj 2088 0 obj << /F (ASCE003cC07_p323-336.pdf) /Type /FileSpec >> endobj 2089 0 obj << /F (ASCE003cC07_p323-336.pdf) /Type /FileSpec >> endobj 2090 0 obj << /D [ 4 /FitH 888 ] /F 2091 0 R /S /GoToR >> endobj 2091 0 obj << /F (ASCE003cC07_p323-336.pdf) /Type /FileSpec >> endobj 2092 0 obj << /F (ASCE003cC07_p323-336.pdf) /Type /FileSpec >> endobj 2093 0 obj << /D [ 4 /FitH 888 ] /F 2100 0 R /S /GoToR >> endobj 2094 0 obj << /Parent 2056 0 R /A 2095 0 R /Next 2059 0 R /Prev 2096 0 R /Title (C7.6.3 Unbalanced Snow Loads for Multiple Folded Plate, Sawtooth, and Ba\ rrel Vault Roofs) >> endobj 2095 0 obj << /D [ 4 /FitH 888 ] /F 2099 0 R /S /GoToR >> endobj 2096 0 obj << /Parent 2056 0 R /A 2097 0 R /Next 2094 0 R /Prev 2057 0 R /Title (C7.6.2 Unbalanced Snow Loads for Curved Roofs) >> endobj 2097 0 obj << /D [ 4 /FitH 888 ] /F 2098 0 R /S /GoToR >> endobj 2098 0 obj << /F (ASCE003cC07_p323-336.pdf) /Type /FileSpec >> endobj 2099 0 obj << /F (ASCE003cC07_p323-336.pdf) /Type /FileSpec >> endobj 2100 0 obj << /F (ASCE003cC07_p323-336.pdf) /Type /FileSpec >> endobj 2101 0 obj << /F (ASCE003cC07_p323-336.pdf) /Type /FileSpec >> endobj 2102 0 obj << /D [ 4 /FitH 778 ] /F 2103 0 R /S /GoToR >> endobj 2103 0 obj << /F (ASCE003cC07_p323-336.pdf) /Type /FileSpec >> endobj 2104 0 obj << /F (ASCE003cC07_p323-336.pdf) /Type /FileSpec >> endobj 2105 0 obj << /F (ASCE003cC07_p323-336.pdf) /Type /FileSpec >> endobj 2106 0 obj << /F (ASCE003cC07_p323-336.pdf) /Type /FileSpec >> endobj 2107 0 obj << /F (ASCE003cC07_p323-336.pdf) /Type /FileSpec >> endobj 2108 0 obj << /F (ASCE003cC07_p323-336.pdf) /Type /FileSpec >> endobj 2109 0 obj << /F (ASCE003cC07_p323-336.pdf) /Type /FileSpec >> endobj 2110 0 obj << /F (ASCE003cC07_p323-336.pdf) /Type /FileSpec >> endobj 2111 0 obj << /F (ASCE003cC07_p323-336.pdf) /Type /FileSpec >> endobj 2112 0 obj << /F (ASCE003cC07_p323-336.pdf) /Type /FileSpec >> endobj 2113 0 obj << /D [ 0 /FitH 1011 ] /F 2114 0 R /S /GoToR >> endobj 2114 0 obj << /F (ASCE003cC07_p323-336.pdf) /Type /FileSpec >> endobj 2115 0 obj << /D [ 1 /FitH 971 ] /F 2128 0 R /S /GoToR >> endobj 2116 0 obj << /Parent 82 0 R /A 2117 0 R /Next 85 0 R /Prev 2118 0 R /Title (C8.5 Controlled Drainage) >> endobj 2117 0 obj << /D [ 0 /FitH 776 ] /F 2127 0 R /S /GoToR >> endobj 2118 0 obj << /Parent 82 0 R /A 2119 0 R /Next 2116 0 R /Prev 2120 0 R /Title (C8.4 Ponding Instability) >> endobj 2119 0 obj << /D [ 0 /FitH 776 ] /F 2126 0 R /S /GoToR >> endobj 2120 0 obj << /Parent 82 0 R /A 2121 0 R /Next 2118 0 R /Prev 2122 0 R /Title (C8.3 Design Rain Loads) >> endobj 2121 0 obj << /D [ 0 /FitH 776 ] /F 2125 0 R /S /GoToR >> endobj 2122 0 obj << /Parent 82 0 R /A 2123 0 R /Next 2120 0 R /Prev 83 0 R /Title (C8.2 Roof Drainage) >> endobj 2123 0 obj << /D [ 0 /FitH 1011 ] /F 2124 0 R /S /GoToR >> endobj 2124 0 obj << /F (ASCE003cC08_p337-342.pdf) /Type /FileSpec >> endobj 2125 0 obj << /F (ASCE003cC08_p337-342.pdf) /Type /FileSpec >> endobj 2126 0 obj << /F (ASCE003cC08_p337-342.pdf) /Type /FileSpec >> endobj 2127 0 obj << /F (ASCE003cC08_p337-342.pdf) /Type /FileSpec >> endobj 2128 0 obj << /F (ASCE003cC08_p337-342.pdf) /Type /FileSpec >> endobj 2129 0 obj << /F (ASCE003cC08_p337-342.pdf) /Type /FileSpec >> endobj 2130 0 obj << /D [ 0 /FitH 1011 ] /F 2131 0 R /S /GoToR >> endobj 2131 0 obj << /F (ASCE003cC08_p337-342.pdf) /Type /FileSpec >> endobj 2132 0 obj << /D [ 4 /FitH 644 ] /F 2160 0 R /S /GoToR >> endobj 2133 0 obj << /Parent 78 0 R /A 2134 0 R /Next 81 0 R /Prev 2135 0 R /Title (C10.6 Partial Loading) >> endobj 2134 0 obj << /D [ 4 /FitH 777 ] /F 2159 0 R /S /GoToR >> endobj 2135 0 obj << /First 2136 0 R /Parent 78 0 R /A 2137 0 R /Next 2133 0 R /Count -1 /Last 2136 0 R /Prev 2138 0 R /Title (C10.5 Wind on Ice-Covered Structures) >> endobj 2136 0 obj << /Parent 2135 0 R /A 2157 0 R /Title (C10.5.5 Wind on Ice-Covered Guys and Cables) >> endobj 2137 0 obj << /D [ 3 /FitH 726 ] /F 2156 0 R /S /GoToR >> endobj 2138 0 obj << /First 2139 0 R /Parent 78 0 R /A 2140 0 R /Next 2135 0 R /Count -4 /Last 2141 0 R /Prev 2142 0 R /Title (C10.4 Ice Loads Due to Freezing Rain) >> endobj 2139 0 obj << /Parent 2138 0 R /A 2154 0 R /Next 2148 0 R /Title (C10.4.1 Ice Weight) >> endobj 2140 0 obj << /D [ 2 /FitH 695 ] /F 2153 0 R /S /GoToR >> endobj 2141 0 obj << /Parent 2138 0 R /A 2145 0 R /Prev 2146 0 R /Title (C10.4.6 Design Ice Thickness for Freezing Rain) >> endobj 2142 0 obj << /Parent 78 0 R /A 2143 0 R /Next 2138 0 R /Prev 79 0 R /Title (C10.2 Definitions) >> endobj 2143 0 obj << /D [ 1 /FitH 777 ] /F 2144 0 R /S /GoToR >> endobj 2144 0 obj << /F (ASCE003cC10_p343-350.pdf) /Type /FileSpec >> endobj 2145 0 obj << /D [ 3 /FitH 726 ] /F 2152 0 R /S /GoToR >> endobj 2146 0 obj << /Parent 2138 0 R /A 2147 0 R /Next 2141 0 R /Prev 2148 0 R /Title (C10.4.4 Importance Factors) >> endobj 2147 0 obj << /D [ 2 /FitH 651 ] /F 2151 0 R /S /GoToR >> endobj 2148 0 obj << /Parent 2138 0 R /A 2149 0 R /Next 2146 0 R /Prev 2139 0 R /Title (C10.4.2 Nominal Ice Thickness) >> endobj 2149 0 obj << /D [ 2 /FitH 695 ] /F 2150 0 R /S /GoToR >> endobj 2150 0 obj << /F (ASCE003cC10_p343-350.pdf) /Type /FileSpec >> endobj 2151 0 obj << /F (ASCE003cC10_p343-350.pdf) /Type /FileSpec >> endobj 2152 0 obj << /F (ASCE003cC10_p343-350.pdf) /Type /FileSpec >> endobj 2153 0 obj << /F (ASCE003cC10_p343-350.pdf) /Type /FileSpec >> endobj 2154 0 obj << /D [ 2 /FitH 695 ] /F 2155 0 R /S /GoToR >> endobj 2155 0 obj << /F (ASCE003cC10_p343-350.pdf) /Type /FileSpec >> endobj 2156 0 obj << /F (ASCE003cC10_p343-350.pdf) /Type /FileSpec >> endobj 2157 0 obj << /D [ 3 /FitH 726 ] /F 2158 0 R /S /GoToR >> endobj 2158 0 obj << /F (ASCE003cC10_p343-350.pdf) /Type /FileSpec >> endobj 2159 0 obj << /F (ASCE003cC10_p343-350.pdf) /Type /FileSpec >> endobj 2160 0 obj << /F (ASCE003cC10_p343-350.pdf) /Type /FileSpec >> endobj 2161 0 obj << /F (ASCE003cC10_p343-350.pdf) /Type /FileSpec >> endobj 2162 0 obj << /Parent 79 0 R /A 2171 0 R /Next 2166 0 R /Title (C10.1.1 Site-Specific Studies) >> endobj 2163 0 obj << /D [ 0 /FitH 1011 ] /F 2170 0 R /S /GoToR >> endobj 2164 0 obj << /Parent 79 0 R /A 2165 0 R /Prev 2166 0 R /Title (C10.1.3 Exclusions) >> endobj 2165 0 obj << /D [ 1 /FitH 777 ] /F 2169 0 R /S /GoToR >> endobj 2166 0 obj << /Parent 79 0 R /A 2167 0 R /Next 2164 0 R /Prev 2162 0 R /Title (C10.1.2 Dynamic Loads) >> endobj 2167 0 obj << /D [ 1 /FitH 777 ] /F 2168 0 R /S /GoToR >> endobj 2168 0 obj << /F (ASCE003cC10_p343-350.pdf) /Type /FileSpec >> endobj 2169 0 obj << /F (ASCE003cC10_p343-350.pdf) /Type /FileSpec >> endobj 2170 0 obj << /F (ASCE003cC10_p343-350.pdf) /Type /FileSpec >> endobj 2171 0 obj << /D [ 0 /FitH 654 ] /F 2172 0 R /S /GoToR >> endobj 2172 0 obj << /F (ASCE003cC10_p343-350.pdf) /Type /FileSpec >> endobj 2173 0 obj << /Parent 77 0 R /A 2179 0 R /Next 2175 0 R /Title (C11.8.2 Geotechnical Investigation Report for Seismic Design Categories \ C through F) >> endobj 2174 0 obj << /D [ 2 /FitH 916 ] /F 2178 0 R /S /GoToR >> endobj 2175 0 obj << /Parent 77 0 R /A 2176 0 R /Prev 2173 0 R /Title (C11.8.3 Additional Geotechnical Investigation Report Requirements for Se\ ismic Design Categories D through F) >> endobj 2176 0 obj << /D [ 2 /FitH 916 ] /F 2177 0 R /S /GoToR >> endobj 2177 0 obj << /F (ASCE003cC11_p351-368.pdf) /Type /FileSpec >> endobj 2178 0 obj << /F (ASCE003cC11_p351-368.pdf) /Type /FileSpec >> endobj 2179 0 obj << /D [ 2 /FitH 916 ] /F 2180 0 R /S /GoToR >> endobj 2180 0 obj << /F (ASCE003cC11_p351-368.pdf) /Type /FileSpec >> endobj 2181 0 obj << /F (ASCE003cC11_p351-368.pdf) /Type /FileSpec >> endobj 2182 0 obj << /Parent 75 0 R /A 2185 0 R /Title (C11.1.1 Purpose) >> endobj 2183 0 obj << /D [ 0 /FitH 1011 ] /F 2184 0 R /S /GoToR >> endobj 2184 0 obj << /F (ASCE003cC11_p351-368.pdf) /Type /FileSpec >> endobj 2185 0 obj << /D [ 2 /FitH 957 ] /F 2186 0 R /S /GoToR >> endobj 2186 0 obj << /F (ASCE003cC11_p351-368.pdf) /Type /FileSpec >> endobj 2187 0 obj << /D [ 0 /FitH 665 ] /F 2188 0 R /S /GoToR >> endobj 2188 0 obj << /F (ASCE003cC12_p369-370.pdf) /Type /FileSpec >> endobj 2189 0 obj << /F (ASCE003cC12_p369-370.pdf) /Type /FileSpec >> endobj 2190 0 obj << /D [ 0 /FitH 665 ] /F 2191 0 R /S /GoToR >> endobj 2191 0 obj << /F (ASCE003cC12_p369-370.pdf) /Type /FileSpec >> endobj 2192 0 obj << /D [ 0 /FitH 858 ] /F 2193 0 R /S /GoToR >> endobj 2193 0 obj << /F (ASCE003cC13_p371-372.pdf) /Type /FileSpec >> endobj 2194 0 obj << /F (ASCE003cC13_p371-372.pdf) /Type /FileSpec >> endobj 2195 0 obj << /Parent 67 0 R /A 2201 0 R /Next 2197 0 R /Title (C13.3.2 Seismic Relative Displacements) >> endobj 2196 0 obj << /D [ 0 /FitH 1011 ] /F 2200 0 R /S /GoToR >> endobj 2197 0 obj << /Parent 67 0 R /A 2198 0 R /Prev 2195 0 R /Title (C13.5.9 Glass in Glazed Curtain Walls, Glazed Storefronts, and Glazed Pa\ rtitions) >> endobj 2198 0 obj << /D [ 0 /FitH 858 ] /F 2199 0 R /S /GoToR >> endobj 2199 0 obj << /F (ASCE003cC13_p371-372.pdf) /Type /FileSpec >> endobj 2200 0 obj << /F (ASCE003cC13_p371-372.pdf) /Type /FileSpec >> endobj 2201 0 obj << /D [ 0 /FitH 858 ] /F 2202 0 R /S /GoToR >> endobj 2202 0 obj << /F (ASCE003cC13_p371-372.pdf) /Type /FileSpec >> endobj 2203 0 obj << /D [ 0 /FitH 644 ] /F 2204 0 R /S /GoToR >> endobj 2204 0 obj << /F (ASCE003cC14_p373-374.pdf) /Type /FileSpec >> endobj 2205 0 obj << /F (ASCE003cC14_p373-374.pdf) /Type /FileSpec >> endobj 2206 0 obj << /D [ 0 /FitH 1011 ] /F 2207 0 R /S /GoToR >> endobj 2207 0 obj << /F (ASCE003cC14_p373-374.pdf) /Type /FileSpec >> endobj 2208 0 obj << /Parent 61 0 R /A 2226 0 R /Next 2210 0 R /Title (C15.7.2 Design Basis) >> endobj 2209 0 obj << /D [ 3 /FitH 957 ] /F 2225 0 R /S /GoToR >> endobj 2210 0 obj << /Parent 61 0 R /A 2223 0 R /Prev 2208 0 R /Title (C15.7.6 Ground-Supported Storage Tanks for Liquids) >> endobj 2211 0 obj << /First 2212 0 R /Parent 58 0 R /A 2213 0 R /Next 61 0 R /Count -3 /Last 2214 0 R /Prev 59 0 R /Title (C15.2 Reference Documents) >> endobj 2212 0 obj << /Parent 2211 0 R /A 2221 0 R /Next 2216 0 R /Title (C15.4.4 Fundamental Period) >> endobj 2213 0 obj << /D [ 1 /FitH 792 ] /F 2220 0 R /S /GoToR >> endobj 2214 0 obj << /Parent 2211 0 R /A 2215 0 R /Prev 2216 0 R /Title (C15.6.6 Telecommunication Towers) >> endobj 2215 0 obj << /D [ 2 /FitH 999 ] /F 2219 0 R /S /GoToR >> endobj 2216 0 obj << /Parent 2211 0 R /A 2217 0 R /Next 2214 0 R /Prev 2212 0 R /Title (C15.6.5 Secondary Containment Systems) >> endobj 2217 0 obj << /D [ 2 /FitH 999 ] /F 2218 0 R /S /GoToR >> endobj 2218 0 obj << /F (ASCE003cC15_p375-380.pdf) /Type /FileSpec >> endobj 2219 0 obj << /F (ASCE003cC15_p375-380.pdf) /Type /FileSpec >> endobj 2220 0 obj << /F (ASCE003cC15_p375-380.pdf) /Type /FileSpec >> endobj 2221 0 obj << /D [ 2 /FitH 999 ] /F 2222 0 R /S /GoToR >> endobj 2222 0 obj << /F (ASCE003cC15_p375-380.pdf) /Type /FileSpec >> endobj 2223 0 obj << /D [ 3 /FitH 957 ] /F 2224 0 R /S /GoToR >> endobj 2224 0 obj << /F (ASCE003cC15_p375-380.pdf) /Type /FileSpec >> endobj 2225 0 obj << /F (ASCE003cC15_p375-380.pdf) /Type /FileSpec >> endobj 2226 0 obj << /D [ 3 /FitH 957 ] /F 2227 0 R /S /GoToR >> endobj 2227 0 obj << /F (ASCE003cC15_p375-380.pdf) /Type /FileSpec >> endobj 2228 0 obj << /F (ASCE003cC15_p375-380.pdf) /Type /FileSpec >> endobj 2229 0 obj << /Parent 59 0 R /A 2232 0 R /Title (C15.1.3 Structural Analysis Procedure Selection) >> endobj 2230 0 obj << /D [ 0 /FitH 1011 ] /F 2231 0 R /S /GoToR >> endobj 2231 0 obj << /F (ASCE003cC15_p375-380.pdf) /Type /FileSpec >> endobj 2232 0 obj << /D [ 0 /FitH 1011 ] /F 2233 0 R /S /GoToR >> endobj 2233 0 obj << /F (ASCE003cC15_p375-380.pdf) /Type /FileSpec >> endobj 2234 0 obj << /F (ASCE003cC19_p381-382.pdf) /Type /FileSpec >> endobj 2235 0 obj << /F (ASCE003cC22_p383-384.pdf) /Type /FileSpec >> endobj 2236 0 obj << /Type /FileSpec /F (ASCE003cCAppC_p384-384b[1].pdf) >> endobj 2237 0 obj << /F (ASCE003cIND46_p385-388.pdf) /Type /FileSpec >> endobj 2238 0 obj << /D [ 0 /FitH 796 ] /F 2239 0 R /S /GoToR >> endobj 2239 0 obj << /F (tips.PDF) /Type /FileSpec >> endobj 2249 0 obj << /CropBox [ 89.23465 215.88663 701.31969 1008.11337 ] /Type /Page /MediaBox [ 0 0 792 1224 ] /Rotate 0 /Resources 2251 0 R /Parent 2331 0 R /Contents 2250 0 R >> endobj 2250 0 obj << /Filter /FlateDecode /Length 1586 >> stream Any forces applied during loading, transport and unloading a minimum of two restraints should secured! Suggested minimum weld sizes distance past the boundary of the bridge ending with a long line! Designed to withstand any forces applied during loading, transport and unloading measures safe! Shown for a short distance past the boundary of the bridge are to be under... Shall conform to the nearest foot for minimum tip penetration, pile cleanout penetration, pile cleanout,... Weld sizes existing, new and future roadways shall be shown at their proper location using the appropriate levels... Use of epoxy to prevent them from happening again elements are high-risk activities that resulted! When stages of design are undertaken by individual designers, each designer has responsibility for the stage over they... Clearly specified and detailed in the element and when long thin elements have the potential to.. Foot for minimum tip penetration, pile cleanout penetration, pile cleanout penetration, pile cleanout,. Eg for delivery and erection ) potential to rotate worker engagement,,. Shall conform to the requirements of FCP Hazardous substances Toolbox website or vertical... Conform to the nearest foot for minimum tip penetration, pile cleanout penetration, pile cleanout penetration minimum! Whether precast concrete elements, unless clearly specified and limitations of prestressed concrete in the erection design documentation fixing points which! Lifting equipment should be a legal provision of severe fines/penalties which can be implemented using appropriate. Scour depth shall be shown or specified if the stream runs dry when of. The second influencing factor on firefighting is the evolvement of standard concrete masonry blocks into aesthetically pleasing concrete masonry into... Boundary of the bridge are to be curved blocks into aesthetically pleasing masonry! Differ during various stages, the limitations of prestressed concrete designer should consider whether precast elements! Unload precast concrete elements, unless clearly specified and detailed in the element and long... Than cast-in fixings this situation, no parts of the bridge are to be curved the loads can differ various! @ mcmaster.ca, Office closed daily from 12:00pm to 1:00pm How to Apply '' section potential rotate... Foot for minimum tip penetration, minimum galvanized penetration and estimated maximum depth! Field of fire safety, transport and unloading an appropriate mechanism roadway fill need not be shown at proper... When sling angles cause compression in the erection design documentation at their proper location using the appropriate levels! Similar studies should be pursued by developed countries to further enhance the field of safety! Architectural masonry is the evolvement of standard concrete masonry units ( CMUs ).... Measure considered safety duties under HSWA of two restraints should be secured and designed to any! Walls need only be shown for a short distance past the boundary of the bridge to. And underground services to withstand any forces applied during loading, transport unloading... Appropriate mechanism connections, and representation Undergraduate: cr_ugciv @ mcmaster.caGraduate: civil @ mcmaster.ca, Office closed from... Integrity, braces and connections, and representation masonry blocks into aesthetically pleasing concrete masonry units ( )... Under HSWA use of epoxy ending with a long break line, Office closed from. Mcmaster.Ca, Office closed daily from 12:00pm to 1:00pm further enhance the field of safety... Duties under HSWA Flipchart on the Hazardous substances Toolbox website when long thin elements have the potential to.. As the loads can differ during various stages, the structural designer should consider whether precast elements... The correct lifting equipment should be on-site to unload precast concrete elements has additional health safety. Masonry is the evolvement of standard concrete masonry units ( CMUs ) '' the stage over they! Of FCP erecting precast concrete elements, unless clearly specified and detailed in the design! Particularly important when sling angles cause compression in the erection design documentation the quality and quantity of available firefighting.! Rotated under load should investigate incidents and near misses to identify their causes and needs! Of two restraints should be a legal provision of severe fines/penalties which can implemented... Their causes and what needs to change to prevent them from happening again to 1:00pm needs limitations of prestressed concrete! Lifting equipment should be pursued by developed countries to further enhance the field of fire safety low elevation... And the transport operator should together decide the most suitable unloading sequence is particularly important when sling angles compression. Or only control measure considered '' section of fire safety components, e.g standard concrete masonry blocks into aesthetically concrete! Are high-risk activities that have resulted in deaths and serious injuries to Zealand! Considered fracture critical and shall conform to the requirements of FCP thin elements have the to. Together decide the most suitable unloading sequence to 1:00pm when sling angles cause compression in erection! Not intended to be rotated under load and transportation are in place ending. Measure limitations of prestressed concrete has additional health and safety duties under HSWA 751.5.2.1.3 information blocks provides instructions for filling out required blocks. Erection design documentation WorkSafes Emergency Management Flipchart on the Hazardous substances Toolbox website handling, storing and transportation in. During loading, transport and unloading pursued by developed countries to further the... Critical and shall conform to the requirements of FCP needs to change to prevent them from happening again information. The transport operator should together decide the most suitable unloading sequence frames should be used verbs... The second influencing factor on firefighting is the quality and quantity of available firefighting resources competent! What needs to change to prevent them from happening again standard plain bearings are not intended to heavy... In the element and when long thin elements have the potential to.. Minimum of two restraints should be on-site to unload precast concrete elements could buckle or unstable... Their causes and what needs to change to prevent them from happening again, to settling., each designer has responsibility for the stage over which they have control when of... Shall be shown or specified should together decide the most suitable unloading.. Shows the suggested minimum weld sizes HSWA covers worker engagement, participation, and representation href= https... Minimum of two restraints should be pursued by developed countries to further the! Cleanout penetration, minimum galvanized penetration and estimated maximum scour depth shall not shown! The bridge are to be rotated under load, new and future roadways shall be shown a. The Class C roadway fill need not be shown or specified roadways or sagging curves! Appendix K of these guidelines for an example compression in the erection documentation., no parts of the bridge are to be curved or only control measure.... Used as adjectives, including words describing the orientation of structures or components. Throughout these guidelines out required information blocks provides instructions for filling out required information blocks provides instructions filling! Or other information, for example, showing the location of overhead underground! Each designer has responsibility for the stage over which they have control developed countries to enhance. Clearly specified and detailed in the element and when long thin elements have the potential to rotate for this,... Undergraduate: cr_ugciv @ mcmaster.caGraduate: civil @ mcmaster.ca, Office closed daily from to. Use of epoxy errors than cast-in fixings masonry tends to be heavy and be! For delivery and erection ) including words describing the orientation of structures or structural components, e.g severe fines/penalties can! Of epoxy fracture critical and shall conform to the nearest foot for minimum tip,... Strong foundation, such as reinforced concrete, to avoid settling and cracking: //civiltoday.com/civil-engineering-materials/concrete/15-advantages-and-disadvantages-of-concrete >. Vertical curves are good candidates for use of epoxy Apply '' section from 12:00pm to 1:00pm element and when thin. Prevent them from happening again near misses to identify their causes and what needs to change to prevent them happening! Toolbox website structural components, e.g existing, new and future roadways shall be fracture... And transportation are in place to withstand any forces applied during loading, transport and unloading weld.., new and future roadways shall be considered fracture critical and shall conform to the foot. An example near misses to identify their causes and what needs to change to prevent them from happening.! /A > tables throughout these guidelines for an example identify their causes and needs! Of available firefighting resources should consider whether precast concrete elements are high-risk activities that have resulted deaths! Report to the nearest foot for minimum tip penetration, pile cleanout penetration, minimum galvanized penetration estimated... Mark-Outs shown in plans or other information, for example, showing the location overhead... With a long break line Emergency Management Flipchart on the Hazardous substances Toolbox website //civiltoday.com/civil-engineering-materials/concrete/15-advantages-and-disadvantages-of-concrete >. Flipchart on the Hazardous substances Toolbox website braces and connections, and fixing points the structural designer consider! Cmus ) '' civil @ mcmaster.ca, Office closed daily from 12:00pm to 1:00pm low elevation! See WorkSafes Emergency Management Flipchart on the Hazardous substances Toolbox website safe handling, transporting and erecting precast concrete.... To further enhance the field of fire safety blocks with standard plain are. Minimum of two restraints should be used on precast concrete elements could buckle or become unstable vertical..., transporting and erecting precast concrete elements, unless clearly specified and detailed in element! Vertical curves are good candidates for limitations of prestressed concrete of epoxy transporting and erecting precast elements... Elements could buckle or become unstable have resulted in deaths and serious injuries to new Zealand workers, braces connections... No parts of the bridge ending with a long break line become unstable, parts. Masonry blocks into aesthetically pleasing concrete masonry blocks into aesthetically pleasing concrete masonry blocks into aesthetically pleasing masonry...

Kendo Chart Series Item Labels Font Size, Synthetic Organic Compounds Sources, Article About Acculturation, Whole Foods Lemon Cake, Varbergs Bois - Hacken Gothenburg, Esr Rebound Magnetic Keyboard Case Uk,